57,840 research outputs found

    Asymptotic Learning Curve and Renormalizable Condition in Statistical Learning Theory

    Full text link
    Bayes statistics and statistical physics have the common mathematical structure, where the log likelihood function corresponds to the random Hamiltonian. Recently, it was discovered that the asymptotic learning curves in Bayes estimation are subject to a universal law, even if the log likelihood function can not be approximated by any quadratic form. However, it is left unknown what mathematical property ensures such a universal law. In this paper, we define a renormalizable condition of the statistical estimation problem, and show that, under such a condition, the asymptotic learning curves are ensured to be subject to the universal law, even if the true distribution is unrealizable and singular for a statistical model. Also we study a nonrenormalizable case, in which the learning curves have the different asymptotic behaviors from the universal law

    Single-electron transistors in electromagnetic environments

    Full text link
    The current-voltage (I-V) characteristics of single-electron transistors (SETs) have been measured in various electromagnetic environments. Some SETs were biased with one-dimensional arrays of dc superconducting quantum interference devices (SQUIDs). The purpose was to provide the SETs with a magnetic-field-tunable environment in the superconducting state, and a high-impedance environment in the normal state. The comparison of SETs with SQUID arrays and those without arrays in the normal state confirmed that the effective charging energy of SETs in the normal state becomes larger in the high-impedance environment, as expected theoretically. In SETs with SQUID arrays in the superconducting state, as the zero-bias resistance of the SQUID arrays was increased to be much larger than the quantum resistance R_K = h/e^2 = 26 kohm, a sharp Coulomb blockade was induced, and the current modulation by the gate-induced charge was changed from e periodic to 2e periodic at a bias point 0<|V|<2D_0/e, where D_0 is the superconducting energy gap. The author discusses the Coulomb blockade and its dependence on the gate-induced charge in terms of the single Josephson junction with gate-tunable junction capacitance.Comment: 8 pages with 10 embedded figures, RevTeX4, published versio

    Electron screening in the liquid-gas mixed phases of nuclear matter

    Full text link
    Screening effects of electrons on inhomogeneous nuclear matter, which includes spherical, slablike, and rodlike nuclei as well as spherical and rodlike nuclear bubbles, are investigated in view of possible application to cold neutron star matter and supernova matter at subnuclear densities. Using a compressible liquid-drop model incorporating uncertainties in the surface tension, we find that the energy change due to the screening effects broadens the density region in which bubbles and nonspherical nuclei appear in the phase diagram delineating the energetically favorable shape of inhomogeneous nuclear matter. This conclusion is considered to be general since it stems from a model-independent feature that the electron screening acts to decrease the density at which spherical nuclei become unstable against fission and to increase the density at which uniform matter becomes unstable against proton clustering.Comment: 12 pages, 8 figures, accepted for publication in Physical Review

    Observations of solar flare gamma-rays and protons

    Get PDF
    Solar flare gamma-rays (4 to 7 MeV) and protons (8 to 500 MeV) were simultaneously observed from six flares on 1 Apr., 4 Apr., 27, Apr. 13, May 1981, 1 Feb. and 6 June 1982 by the Hinotori and GMS satellites. The relationship between 4 to 7 MeV gamma-ray fluences and peak 16 to 34 MeV proton fluxes for these flares are analyzed. It does not reveal an apparent correlation between these two parameters. The present result implies that the protons producing gamma-rays and the protons observed near the Earth do not always belong to the same population

    Efficient Implementations of Molecular Dynamics Simulations for Lennard-Jones Systems

    Full text link
    Efficient implementations of the classical molecular dynamics (MD) method for Lennard-Jones particle systems are considered. Not only general algorithms but also techniques that are efficient for some specific CPU architectures are also explained. A simple spatial-decomposition-based strategy is adopted for parallelization. By utilizing the developed code, benchmark simulations are performed on a HITACHI SR16000/J2 system consisting of IBM POWER6 processors which are 4.7 GHz at the National Institute for Fusion Science (NIFS) and an SGI Altix ICE 8400EX system consisting of Intel Xeon processors which are 2.93 GHz at the Institute for Solid State Physics (ISSP), the University of Tokyo. The parallelization efficiency of the largest run, consisting of 4.1 billion particles with 8192 MPI processes, is about 73% relative to that of the smallest run with 128 MPI processes at NIFS, and it is about 66% relative to that of the smallest run with 4 MPI processes at ISSP. The factors causing the parallel overhead are investigated. It is found that fluctuations of the execution time of each process degrade the parallel efficiency. These fluctuations may be due to the interference of the operating system, which is known as OS Jitter.Comment: 33 pages, 19 figures, add references and figures are revise

    Quantum Effects in Small-Capacitance Single Josephson Junctions

    Full text link
    We have measured the current-voltage (I-V) characteristics of small-capacitance single Josephson junctions at low temperatures (T=0.02-0.6 K), where the strength of the coupling between the single junction and the electromagnetic environment was controlled with one-dimensional arrays of dc SQUIDs. The single-junction I-V curve is sensitive to the impedance of the environment, which can be tuned IN SITU. We have observed Coulomb blockade of Cooper-pair tunneling and even a region of negative differential resistance, when the zero-bias resistance R_0' of the SQUID arrays is much higher than the quantum resistance R_K = h/e^2 = 26 kohm. The negative differential resistance is evidence of coherent single-Cooper-pair tunneling within the theory of current-biased single Josephson junctions. Based on the theory, we have calculated the I-V curves numerically in order to compare with the experimental ones at R_0' >> R_K. The numerical calculation agrees with the experiments qualitatively. We also discuss the R_0' dependence of the single-Josephson-junction I-V curve in terms of the superconductor-insulator transition driven by changing the coupling to the environment.Comment: 11 pages with 14 embedded figures, RevTeX4, final versio

    Rhythmic Motion of a Droplet under a DC Electric Field

    Get PDF
    The effect of a stationary electric field on a water droplet with a diameter of several tens micrometers in oil was examined. Such a droplet exhibits repetitive translational motion between the electrodes in a spontaneous manner. The state diagram of this oscillatory motion was deduced; at 0-20 V the droplet is fixed at the surface of the electrode, at 20-70 V the droplet exhibits small-amplitude oscillatory motion between the electrodes, and at 70-100 V the droplet shows large-amplitude periodic motion between the electrodes. The observed rhythmic motion is explained in a semi-quantitative manner by using differential equations, which includes the effect of charging the droplet under an electric field. We also found that twin droplets exhibit synchronized rhythmic motion between the electrodes
    corecore